Classifying Double Skin Walls Figure 1: Classification of double skin walls. Source: Perkins+Will Research Journal # Double Skin Façade as a central direct pre-heater of the supply air # Double Skin Façade as an exhaust duct ## Double Skin Façade as an individual supply of the preheated air Double Skin Façade as a central exhaust duct for the ventilation system $$Q_{total} = Q_{solar} + Q_{radiation} + Q_{convection}$$ ### Where: Q_{total} is the total heat entering the indoor space through glazing. Q_{solar} is the solar heat entering the indoor space through glazing. $Q_{\text{radiation}}$ is the heat entering the indoor space by thermal radiation from the glazing internal surface. $Q_{\text{convection}}$ is the heat entering the indoor space by thermal convection from the glazing internal surface. ## Radtherm Thermal Analysis Software ### Surface physical properties of modeled double wall glazing system Figure. Surface physical properties of modeled double wall glazing system #### Metal fin North surface: polished aluminum Absorptivity=0.08 Emissivity=0.05 South surface: galvanized aluminum Absorptivity=0.49 Emissivity=0.22 ### West-facing internal glazing surface solar heat flux comparison Fin distance = 1500 mm Fin width = 600 mm Fin shade can reduce solar radiation penetrating into the building space. Comparison in the Figure above shows that the peak solar radiation heat flux can be reduced by 1.3~4.7 W/sqm of window area. Fins with angle of 30 degree give the largest solar heat flux reduction. | | | | | | | | | EXTERNA | AL WALL | ANALY | SIS MATRI) | (| | | | | | | | | | |----------------|--------------------|---|---|---|--|--|---|--|--|---|--|--|--|--|--|---------------------------------------|---|----------------------------------|----------------------|-------|-----------------------------| | | | | External Wall | | | | | | WEST
ading Dev | FAÇADE
ice | Ventilation | Internal Wall | | | | Results
Internal Wall Surface (#2) | | | | | | | | | Туре | WWR (%) | U-Value
(w/m²k) | SHGC | VLT | Depth (mm) | Туре | Spacing
(mm) | Depth
(mm) | Ventilation
Strategy | WWR (%) | U-Value
(w/m²k) | SHGC | VLT | Peak
Wall
Temp.
(°C) | Peak
glazing
total load
(W/m²) | Peak
glazing
solar
load | Int. Wall
Shading | DF(%) | Energy
Usage
(kWh/m²) | | | | Page Due 5000 Code Compleint 6/05 2 | | | • | SINGLE | WALL SYS | TEM | | | | | | | | | | | | | | | | S1 | Base Run - ECBC Code Complaint (VRE 2-
38 single pane)
IGU + Low-e coat (6mm-12mm-6mm, VRE | 40% | 3.25 | 0.25 | 0.34 | NA 51.3 | 219.3 | 142.1 | | | | | | S2 | 2-54, Green) IGU + Low-e coat (6mm-12mm-6mm, VE 2- | 70% | 1.70 | 0.24 | 0.40 | NA 34.0 | 148.0 | | | | | | | | 2M, Green) IGU + Low-e coat (6mm-12mm-6mm, VRE | 70% | 1.66 | 0.32 | 0.60 | NA | | | | | | | | S3 | 1-38, Clear) | 70% | 1.60 | 0.23 | 0.36 | NA | | | | | | | | DOUBLE WALL SYSTEM | | | | | | | | | | | | | | | 42.9 | 540.9 | 455.3 | | | | | | D1
D2 | Ext Clear SG (6), Int Clear SG (6) Ext IGU (6-12-6), Int Clear SG (6) | 100
100 | 5.81
2.80 | 0.84
0.70 | 0.89
0.79 | 1000
1000 | NA
NA | NA
NA | NA
NA | Sealed
Sealed | 55
55 | 5.81
5.81 | 0.84
0.84 | 0.89
0.89 | 46.5 | 560.8 | 436.5 | | | | | | DЗ | Ext IGU + Low-e coating (6-12-6, VE 2-
2M, Green), Int Clear SG (6)
Ext IGU + Low-e coating (6-12-6, VRE 2- | 100 | 1.66 | 0.32 | 0.60 | 1000 | NA | NA | NA | Sealed | 55 | 5.81 | 0.84 | 0.89 | 40.2 | | 179.6 | | | | | al Wa | | 54, Green), Int Clear SG (6) Ext IGU + Cricursa Cal. Film, Int Clear | 100 | 1.70 | 0.24 | 0.40 | 1000 | NA | NA | NA | Sealed | 55 | 5.81 | 0.84 | 0.89 | 37.0 | 202.8 | 136.5 | | | | | External Wall | | SG (6) | 100 | ? | 0.44 | 0.57 | 1000 | NA | NA | NA | Sealed | 55 | 5.81 | 0.84 | 0.89 | | | | | | | | ш | D5
D6 | Ext Tripple Laminate (Cricursa) Cal. Film
+ Chromascreen, Int Clear SG (6)
Ext WWR Reduction | 100
75 | ? | ? | ? | 1000
1000 | NA
NA | NA
NA | NA
NA | Sealed
Sealed | 55
55 | 5.81
5.81 | 0.84
0.84 | 0.89 | | | | | | | | Air Cavity | | Ext IGU + Low-e coating (6-12-6, VRE 2-
54, Green), Int Clear SG (6) | 100
100
100
100
100 | 1.7
1.7
1.7
1.7
1.7 | 0.24
0.24
0.24
0.24
0.24 | 0.40
0.40
0.40
0.40
0.40 | 300
600
1000
1200
1500 | NA
NA
NA
NA | NA
NA
NA
NA | NA
NA
NA
NA | Sealed
Sealed
Sealed
Sealed
Sealed | 55
55
55
55
55 | 5.81
5.81
5.81
5.81
5.81 | 0.84
0.84
0.84
0.84
0.84 | 0.89
0.89
0.89
0.89
0.89 | 36.3
37.2
37.7 | 177.5
182.7
191.9 | 117.5
115.4
111.1 | | | | | Shading Device | | Ext IGU + Low-e coating (6-12-6, VRE 2-
54, Green), Int Clear SG (6) | 100
100
100
100
100
100
100
100
100 | 1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.7 | 0.24
0.24
0.24
0.24
0.24
0.24
0.24
0.24 | 0.40
0.40
0.40
0.40
0.40
0.40
0.40
0.40 | 1000
1000
1000
1000
1000
1000
1000
100 | Vertical Vertical Vertical Vertical Vertical 30° CCW 30° CCW 30° CCW 30° CCW 30° CCW 30° CCW | 1500
750
500
750
500
1500
750
500
750
500 | 600
600
300
300
600
600
600
300
300 | Sealed
Sealed
Sealed
Sealed
Sealed
Sealed
Sealed
Sealed
Sealed
Sealed | 55
55
55
55
55
55
55
55
55 | 5.81
5.81
5.81
5.81
5.81
5.81
5.81
5.81 | 0.84
0.84
0.84
0.84
0.84
0.84
0.84
0.84 | 0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89 | 37.2
38.3
37.0 | 194.3
201.3
178.9 | 128.4
130.2
113.8 | | | | | Ventilation | | Ext IGU + Low-e coating (6-12-6)), Int Clear SG (6) | | | | | | | | | IAW
IAW
IAW | | | | | | | | | | | | Internal Wall | | Ext IGU + Low-e coating (6-12-6)), Int Clear SG (6) | 100
100
100
100
100 | ? ? ? | ? ? ? | ? ? ? ? | 1000
1000
1000
1000
1000 | Vertical Vertical Vertical Vertical Vertical | 1500
1500
1500
1500
1500 | 600
600
600
600
600 | IAC
IAC
IAC
IAC
IAC | 100
75
50
40
30 | 5.7
5.7
5.7
5.7
5.7 | 0.82
0.82
0.82
0.82
0.82 | 0.88
0.88
0.88
0.88
0.88 | | | | | | |